Data Science Build

Een van mijn favoriete bezigheden in het verleden was het spelen van Skyrim. In dit spel kun je je character build compleet zelf bepalen. Je kan spelen als een mage, warrior, thief of hybrid en zelfs daarbij kun je nog oneindig veel variëren met de skills waar je je op focust.

Echter, wil je in Skyrim succes hebben dan is het niet zo’n goed idee om alles tegelijk te doen. Tuurlijk, de sterkste Dragonborn is de Dragonborn die het allemaal kan, maar met zoveel verschillende skills duurt het helaas veel te lang als je alles tegelijk doet.

Niet alleen dat, de vijanden schalen met je level. Dus, als jij je levels te dun spreidt over alle verschillende vaardigheden dan eindig je uiteindelijk met met een Dragonborn die nergens goed in is en compleet ingemaakt wordt door alles wat hij tegenkomt.

De andere kant die je op kunt gaan is het jezelf specialiseren in slechts een enkele skill. Dit werkt al een stuk beter dan wanneer je alles tegelijk probeert te doen, zolang je je maar specialiseert op een skill waarmee je daadwerkelijk kunt winnen, oftewel damage doen. En het is waar, een pure Destruction mage met stagger lock is een gevaarlijke tegenstander waar veel vijanden in Skyrim lastig mee om kunnen gaan.

Een puur offensieve two handed warrior is ook een gevaarlijke tegenstander, maar raakt al gauw in de problemen omdat hij in de buurt moet komen van de tegenstander om damage te doen. Hierdoor krijgt hij ofwel zelf al snel teveel damage om te overleven, of kan hij niet eens damage doen omdat zijn tegenstander vliegt en hem van een afstand tot een hoopje as reduceert.

Maar, ook de Destruction mage raakt in de problemen wanneer hij in een gevecht terecht komt met meerdere boogschutters die allemaal in staat zijn om hem met een pijl uit te schakelen aangezien hij totaal geen armor heeft.

De volgende logische stap is dan ook om ervoor te zorgen dat je ook defensieve kwaliteiten hebt. Als je dood bent houdt het immers allemaal op, en meer verdediging geeft meer tijd om damage te doen en te reageren op lastige situaties. Een build met slechts een offensieve en een defensieve kwaliteit is al een stuk robuuster en doet het bijzonder goed in de meeste situaties.

Maar, zelfs zo’n build komt nog steeds situaties tegen waar hij niet goed mee om kan gaan, en waar de toevoeging van slechts een enkele skill al een wereld van verschil had kunnen maken! Echter, wat je ook toe voegt, er zullen altijd gaten blijven bestaan. Tenzij je alles toe voegt, in welk geval je weer overal slecht in bent.

Wat heeft dit nu allemaal te maken met Data Science?

Nou, Data Science is net zoals Skyrim: er zijn teveel vaardigheden om allemaal in een keer te leren. Er is te weinig tijd om het allemaal te leren, en je concurrentie zal je voorbij schieten als je het probeert.

De enige manier om een kans te maken is door jezelf te specialiseren!

Het is waar, door jezelf te specialiseren zul je jezelf automatisch diskwalificeren voor een groot aantal Data Science vacatures. Maar, je zult jezelf ook bijzonder geschikt maken voor het vervullen van een klein maar fijn aantal vacatures en projecten die precies de vaardigheid vereisen die jij bezit.

Dit is natuurlijk voorwaardelijk aan het kiezen van een specialiteit die daadwerkelijk het gewenste resultaat behaald. In de echte wereld ben je echter altijd op de een of andere manier onderdeel van een team. Als jij het juiste team kan vinden dan maakt het niet uit hoe klein jouw specialisme is op zichzelf. Als het een waardevol onderdeel is van het gehele proces, dan is het een nuttig specialisme.

Dat heet teamwork.

Kun jij bijvoorbeeld alleen data vanuit een database met SQL verzamelen in een csv bestand, dan is dat mogelijk een heel nuttige vaardigheid. Echter, de kans is groot dat je het moeilijk zult vinden om een team te vinden dat op zoek is naar een specialisme dat zo specifiek is. Al is het niet onmogelijk als jij jezelf genoeg kan onderscheiden van de concurrentie door er absurd goed in te zijn.

“I fear not the man who has practiced 10,000 kicks once, but I fear the man who has practiced one kick 10,000 times.” – Bruce Lee

Echter, het is waarschijnlijk praktischer als jij wat excellentie op geeft in het maken van csv bestanden en je bijvoorbeeld specialiseert in het maken van machine learning modellen.

Natuurlijk komt er een stuk meer kijken bij een succesvol machine learning project en het bereiken van een data driven bedrijf. Wat is het waard om te modelleren? Waar haal je de data vandaan? Hoe breng je het in de praktijk? Dat zijn allemaal vragen die ook belangrijk zijn en een hoop aandacht en expertise vragen. Bovendien zijn er nog veel meer dingen belangrijk bij het realiseren van een data driven bedrijf, zoals bijvoorbeeld A/B testing.

Maar, deze vaardigheid kan zeker een waardevolle toevoeging zijn voor veel bedrijven. En dit is natuurlijk slechts één voorbeeld van de vele mogelijke builds die je je maar kunt bedenken! Maar, wat je ook doet, probeer niet alles tegelijk te doen, of je zult nooit resultaten behalen.

Het is beter om slechts een skill te trainen dan na te denken over hoe je hem het beste kan aanvullen dan om alle skills tegelijk te oefenen en compleet ingemaakt te worden door elke mudcrab die je tegen komt.

Bedenk een build voor jezelf.

Data wat?

Hallo wereld,

Wat is een Data Scientist? Vandaag de dag is het lastig om daar een eenduidig antwoord op te vinden.

Sommigen zijn van mening dat Data Scientists vooral experts moeten zijn in statistiek. Anderen zijn van mening dat ze vooral geweldig moeten zijn in programmeren. Weer anderen leggen de nadruk op zakelijk inzicht.

Sommigen  vinden dat statistiek niet genoeg is, ze moeten zowel breedte en diepgang hebben in allerlei wiskundige disciplines. Niet alleen dat, ze moeten ook een diepgaande kennis hebben over de bedrijfstak waar ze in werkzaam zijn!

Maar de meesten vinden dat een Data Scientist dit eigenlijk ALLEMAAL moet kunnen! En nog veel meer!!!

Pfoe, het is niet makkelijk om een Data Scientist te zijn! Als je de omschrijvingen van het beroep allemaal letterlijk zou nemen is het moeilijk om jezelf voor te stellen dat deze wonderen der natuur daadwerkelijk de aardbodem bewandelen.

Photo by Elias Castillo on Unsplash

Waar begin je als leek om jezelf om te scholen tot Data Scientist? Hoe ga je verder?! Wanneer ben je klaar? Het antwoord op de eerste twee vragen is lastig, maar het antwoord op de laatste is duidelijk: NOOIT. Wat?! Maar Samson, hoe wordt ik dan een Data Scientist? Waarom zou ik beginnen als ik toch nooit klaar zal zijn met leren?!

Een betere vraag zou zijn, waarom zou je NIET beginnen als je dan nooit klaar HOEFT te zijn met leren? Oké, dat is eng, toegegeven, maar dat is ook wat Data Science juist zo interessant maakt! Maar, om praktisch te blijven, wat betekent het nou precies om Data Scientist te worden, en hoe krijg je er brood mee op de plank?

Nou, ik ben natuurlijk maar een leek, maar mij lijkt het dat je een Data Scientist bent wanneer je een combinatie van de eerder genoemde vaardigheden toepast om tot waardevolle inzichten te komen voor een bedrijf. Of voor een consument in de vorm van een applicatie. Wat voor combinatie? Hoe waardevol? Dat kan verschillen. Maar de kern zit hem in het bedenken van creatieve oplossingen voor complexe, multidisciplinaire data problemen. Datamining in principe, waar ik al meer over had geschreven in dit bericht.

Dat is best vaag, en de term Data Scientist kan dan misschien ook wel wat specifiekere “sub-classes” gebruiken. Er lijken echter wel wat algemene kenmerken te bestaan. Namelijk:

  1. Kennis van wiskunde, en vooral statistiek
  2. Ervaring met Python of vergelijkbare taal
  3. Ervaring met data analyse en data visualisatie
  4. Ervaring met het trainen van machine learning algoritmes
  5. Communicatievaardigheden
  6. Zakelijk inzicht

Verder? The sky is the limit!

Hopelijk heb ik je nu niet al te bang gemaakt? Oké, ik zal ophouden. Maar, bedenk jezelf het volgende.

Ook al zou je niet in staat zijn om al deze dingen te leren, dan zijn het stuk voor stuk nog steeds verdomd waardevolle vaardigheden om in je portfolio te hebben! Neem gewoon een stapje tegelijk, blijf jezelf ontwikkelen, en kijk hoe ver je komt. Je hoeft niet te wachten totdat je voldoet aan alle omschrijvingen van een Data Scientist voordat je er iets geweldigs mee kan gaan doen!

Wil je lezen wat anderen zeggen over wat een Data Scientist is? Kijk dan eens in de onderstaande bronnen. Dat is alles voor nu.

 

Tot de volgende keer!

 

Bronnen