Data Science Build – Deel 2

“I fear the man who has practised one kick 10,000 times, but the man who has practiced 10,000 kicks once scares the shit out of me.

And don’t even get me started on the man who has practiced 10,000 kicks twice!”

– Sam Dee

Gegroet Dataridder,

Zou je niet willen dat alles in het leven zwart of wit zou zijn? Dat er geen tegenstrijdigheden waren en alle vragen één antwoord hadden?

 

Jammer dan.

 

Dit is de echte wereld en in de echte wereld is alles grijs.

Nou ja, figuurlijk gesproken dan.

In mijn eerdere bericht vertelde ik je dat je beste kans om een Data Scientist te worden specialisatie was. In dit bericht ga ik je compleet in de war brengen en alles in dat vorige bericht compleet tegenspreken.

En bevestigen.

Heb je wel eens Skyrim gespeeld? Of een andere RPG misschien? Heb je weleens geprobeerd om een build te maken die slechts een of twee skills gebruikt?

 

Hoe was dat?

 

Effectief. Meestal. Soms. Een beetje.

Ik had het er al over in mijn eerdere bericht. Het is niet altijd handig om een specialist te zijn. In sommige gevallen is jouw specialisme compleet nutteloos. De zwaardvechter die een draak probeert te bestrijden komt er al gauw achter dat zwaarden niet veel schade doen als je tegenstander vliegt. En ze zijn ook niet echt nuttig om drakenvuur van je gezicht af te houden.

 

Maar niet alleen dat. Het was ook nogal saai, nietwaar?

 

Elk gevecht is hetzelfde:

“HAK! HAK! HAK!

– Warrior

 

“POW! POW! POW!”

– Mage

 

“PEW! PEW! PEW!”

– Archer

 

Dat moet toch beter kunnen?

 

En ik heb het niet alleen over mijn geluidseffecten. Waarom geen meer veelzijdige build? Een build die zich kan aanpassen aan elke situatie? Een build waarmee elk gevecht een nieuw avontuur is?

Een GENERALIST.

Zoals ik al zei heeft de generalist echter zijn eigen problemen. Overal slecht in, nergens goed in. Maar het is mogelijk om je build veelzijdiger te maken. Flexibeler te maken. Interessanter te maken. En het is in mijn mening ook zeker aan te raden om dat te doen.

Maar, hoe doe je dat zonder je build compleet waardeloos te maken?

Nou, ten eerste is het van belang om vaardigheden te kiezen die elkaar aanvullen in plaats van vaardigheden die precies hetzelfde doen op een iets andere manier. Ga geen build maken met zowel de two handed als one handed weapon skill.

Logisch.

Maar, one handed en destruction doen in principe ook hetzelfde: schade aanbrengen. Ze doen het echter op verschillende manieren en zijn nuttig in verschillende situaties. Hierdoor word de build opeens een stuk flexibeler.

En dat wil je dus ook doen met Data Science. Je wilt vaardigheden kiezen die elkaar aanvullen. Niet vaardigheden die elkaar in de weg zitten.

Het lijkt dan op het eerste gezicht ook een slecht idee om Data Science te leren en tegelijkertijd ook proberen om een Front-End Web Developer te worden.

Maar, wat als je je specialiseert in A/B testing en ook in staat bent om zelf verschillende webpagina’s te bouwen? Dat zou dan misschien weer WEL nuttig kunnen zijn, maar alleen als je om de een of andere reden niet in staat of bereid bent om iemand anders het bouwen van de webpagina’s voor je te laten doen.

Ingewikkeld allemaal hè?

Nou het wordt nog ingewikkelder. Als mens zijn wij namelijk geëvolueerd als generalisten. Onze grootste kracht en zwakte was ons vermogen om bijna overal slecht in te zijn. We hadden geen warme vacht. We hadden geen scherpe tanden of klauwen. We hadden geen vleugels.

We hadden bijzonder weinig.

Maar, we waren wel nieuwsgierig, slim en creatief. We waren constant op onderzoek, aan het experimenteren en aan het uitvinden. Hierdoor konden wij ons aanpassen aan vrijwel elke situatie.

We hadden geen vacht nodig want we maakten kleren. We hadden geen klauwen nodig want we maakten speren. We hadden geen vleugels nodig want we maakten bogen.

En we waren ook sociaal. Langzaam maar zeker waren wij in staat om samen te werken in steeds grotere aantallen. Maatschappijen ontstonden en groeien nog altijd groter en groter. En in een maatschappij is het mogelijk om jezelf te specialiseren in het maken van kleren en niet om te komen van de honger. Specialisatie werd geboren en verheven.

Maar, diep van binnen zijn wij nog steeds allemaal een stelletje generalisten. Nieuwsgierige kunstenaars die verslaafd zijn aan afwisseling. En als we de hele dag hetzelfde moeten doen, dan worden wij daar bijzonder depressief van. Variatie is daarom niet alleen nuttig voor flexibiliteit, maar ook voor je mentale gezondheid.

Laten we nu even terug gaan naar de man die 10,000 trappen één keer oefende. Heb je wel eens nagedacht over wat nou echt het effect zou zijn van zo’n training? Denk je niet dat deze man niet afschuwelijk sterke en behendige benen zou ontwikkelen? Denk je niet dat hij afschuwelijk onvoorspelbaar en flexibel zou zijn? En denk je niet dat hij een stuk meer plezier heeft gehad in het leven dan de man die een trap 10,000 keer geoefend heeft? En een stuk minder last van RSI?

Het lijkt erop dat ik mijzelf compleet tegen gesproken heb, maar dat is niet zo. Wat ik in mijn eerdere bericht had gezegd was ook allemaal waar. Het is echter allemaal wat ingewikkelder dan het op het eerste gezicht lijkt.

Maar, dat is geen tegenstrijd. Dat is complexiteit. Het lijkt alleen maar tegenstrijdig, omdat we het met ons kleine brein niet allemaal tegelijkertijd kunnen begrijpen.

 

Denk daar maar eens over na.

 

Ik hoop dat ik je niet al te veel in de war heb gebracht. In tegenstelling tot wat ik eerder zei was dat echt niet mijn bedoeling. Maar het leven is nou eenmaal niet altijd zo simpel als we zouden willen.

Is het nu mijn advies om een trap 10,000 keer te oefenen? Nee. 10,000 trappen een keer te oefenen? Ook niet. De beste oplossing zit er waarschijnlijk ergens tussen in.

Specialisatie is een krachtig en noodzakelijk principe. Maar, vergeet niet dat het bijzonder veel makkelijker en leuker is om 10,000 trappen TWEE keer te oefenen dan een trap 20,000 keer, en dat een high kick bijzonder nutteloos is tegen een dwerg met een machinegeweer.

Dat is alles voor nu,

 

Tot de volgende keer!

Geef een reactie

Het e-mailadres wordt niet gepubliceerd.